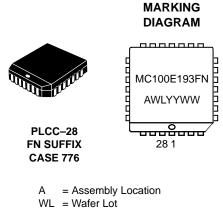
5V ECL Error Detection/ Correction Circuit

The MC100E193 is an error detection and correction (EDAC) circuit. Modified Hamming parity codes are generated on an 8-bit word according to the pattern shown in the logic symbol. The P5 output gives the parity of the whole word. The word parity is also provided at the PGEN pin, after Odd/Even parity control and gating with the BPAR input. This output also feeds to a 1-bit shiftable register, for use as part of a scan ring.

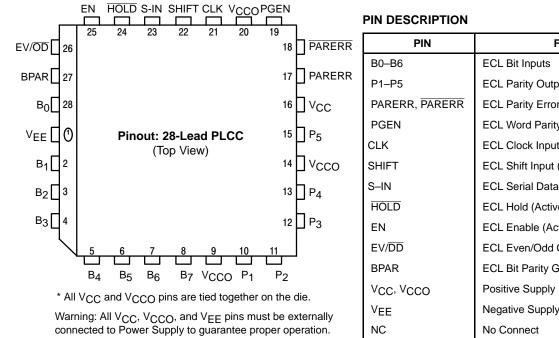
Used in conjunction with 12-bit parity generators such as the E160, a SECDED (single error correction, double error detection) error system can be designed for a multiple of an 8-bit word.


The 100 Series contains temperature compensation.

- Hamming Code Generation
- 8-Bit Word, Expandable
- Provides Parity of Whole Word
- Scannable Parity Register
- PECL Mode Operating Range: $V_{CC} = 4.2$ V to 5.7 V with $V_{EE} = 0$ V
- NECL Mode Operating Range: $V_{CC} = 0 V$ with $V_{EE} = -4.2 V$ to -5.7 V
- Internal Input Pulldown Resistors
- ESD Protection: >1 KV HBM, >75 V MM
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity Level 1 For Additional Information, see Application Note AND8003/D
- Flammability Rating: UL 94 code V–0 @ 1/8", Oxygen Index 28 to 34
- Transistor Count = 368 devices

ON Semiconductor™

http://onsemi.com



YY = Year

WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping				
MC100E193FN	PLCC–28	37 Units/Rail				
MC100E193FNR2	PLCC-28	500 Units/Reel				

Figure 1. Pinout Assignment

PIN	FUNCTION
B0–B6	ECL Bit Inputs
P1–P5	ECL Parity Outputs
PARERR, PARERR	ECL Parity Error Outputs
PGEN	ECL Word Parity Generator Output
CLK	ECL Clock Input
SHIFT	ECL Shift Input (Active–High)
S–IN	ECL Serial Data Input
HOLD	ECL Hold (Active–Low)
EN	ECL Enable (Active–Low)
EV/DD	ECL Even/Odd Contact
BPAR	ECL Bit Parity Gate Input
VCC, VCCO	Positive Supply
V _{EE}	Negative Supply
NC	No Connect

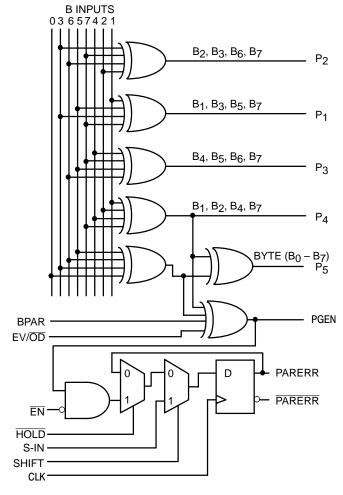


Figure 2. Logic Diagram

MAXIMUM RATINGS (Note 1)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
VCC	PECL Mode Power Supply	V _{EE} = 0 V		8	V
V_{EE}	NECL Mode Power Supply	V _{CC} = 0 V		-8	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V ^{CC} = 0 V	$\begin{array}{l} V_I \leq V_{CC} \\ V_I \geq V_{EE} \end{array}$	6 6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
ТА	Operating Temperature Range			0 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θJA	Thermal Resistance (Junction-to-Ambient)	0 LFPM 500 LFPM	28 PLCC 28 PLCC	63.5 43.5	°C/W °C/W
θJC	Thermal Resistance (Junction-to-Case)	std bd	28 PLCC	22 to 26	°C/W
V_{EE}	PECL Operating Range NECL Operating Range			4.2 to 5.7 -5.7 to -4.2	V V
T _{sol}	Wave Solder	< 2 to 3 sec @ 248°C		265	°C

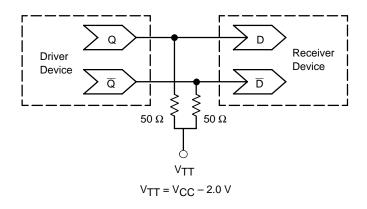
1. Maximum Ratings are those values beyond which device damage may occur.

100E SERIES PECL DC CHARACTERISTICS V_{CCx} = 5.0 V; V_{EE} = 0.0 V (Note 2)

		0°C			25°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current		112	134		112	134		129	155	mA
VOH	Output HIGH Voltage (Note 3)	3975	4050	4120	3975	4050	4120	3975	4050	4120	mV
VOL	Output LOW Voltage (Note 3)	3190	3295	3380	3190	3255	3380	3190	3260	3380	mV
VIH	Input HIGH Voltage	3835	4050	4120	3835	4120	4120	3835	4120	4120	mV
VIL	Input LOW Voltage	3190	3300	3525	3190	3525	3525	3190	3525	3525	mV
Ιн	Input HIGH Current			150			150			150	μΑ
۱ _{IL}	Input LOW Current	0.5	0.3		0.5	0.25		0.5	0.2		μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. 2. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.46 V / -0.8 V. 3. Outputs are terminated through a 50 Ω resistor to V_{CC} - 2.0 V.

100E SERIES NECL DC CHARACTERISTICS $\,$ V_{CCx} = 0.0 V; V_{EE} = –5.0 V (Note 4)

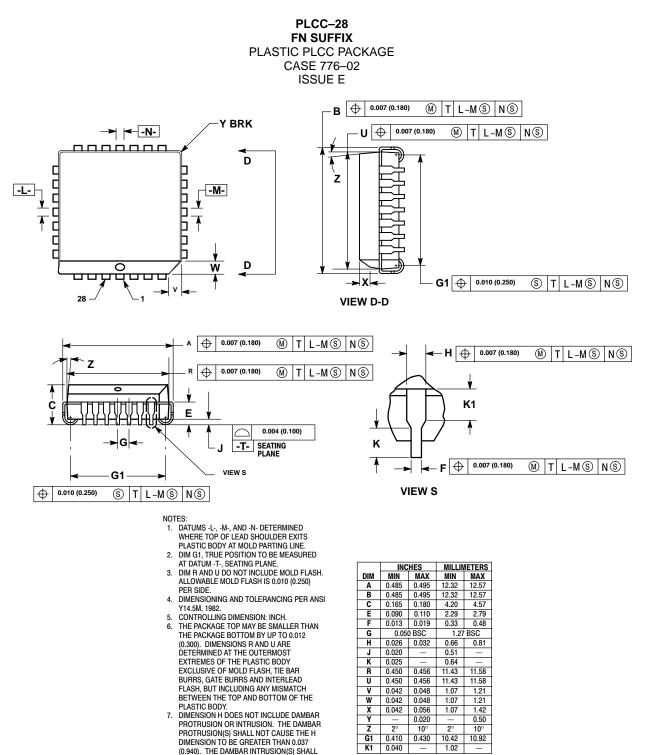

		0°C			25°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current		112	134		112	134		129	155	mA
VOH	Output HIGH Voltage (Note 5)	-1025	-950	-880	-1025	-950	-880	-1025	-950	-880	mV
V _{OL}	Output LOW Voltage (Note 5)	-1810	-1705	-1620	-1810	-1745	-1620	-1810	-1740	-1620	mV
VIH	Input HIGH Voltage	-1165	-950	-880	-1165	-880	-880	-1165	-880	-880	mV
VIL	Input LOW Voltage	-1810	-1700	-1475	-1810	-1475	-1475	-1810	-1475	-1475	mV
ЧΗ	Input HIGH Current			150			150			150	μA
۱ _{IL}	Input LOW Current	0.5	0.3		0.5	0.25		0.5	0.2		μA

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.
Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.46 V / -0.8 V.
Outputs are terminated through a 50 Ω resistor to V_{CC} - 2.0 V.

AC CHARACTERISTICS $V_{CCx} = 5.0 \text{ V}; V_{EE} = 0.0 \text{ V}$ or $V_{CCx} = 0.0 \text{ V}; V_{EE} = -5.0 \text{ V}$ (Note 6)

			0°C			25°C		85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
fMAX	Maximum Toggle Frequency		TBD			TBD			TBD		GHz
^t PLH	Propagation Delay to Output										ps
^t PHL	B to P1, P2, P3, P4	350	700	1000	350	700	1000	350	700	1000	
	B to P5	400	775	1150	400	775	1150	400	775	1150	
	EV/OD, BPAR to PGEN	350	650	850	350	650	850	350	650	850	
	B to PGEN	600	1000	1450	600	1000	1450	600	1000	1450	
	CLK to PARERR	300	550	850	300	550	850	300	550	850	
t _S	Setup Time										ps
	SHIFT	400	150		400	150		400	150		
	S-IN	300	50		300	50		300	50		
	HOLD	750	350		750	350		750	350		
	EN	500	250		500	250		500	250		
	EV/OD	1300	850		1300	850		1300	850		
	BPAR	1300	850		1300	850		1300	850		
	В	1700	1100		1700	1100		1700	1100		
t _h	Hold Time										ps
	SHIFT	200	-150		200	-150		200	-150		
	S-IN	300	- 50		300	- 50		300	- 50		
	HOLD	100	- 350		100	- 350		100	- 350		
	EN	100	- 250		100	- 250		100	- 250		
	EV/OD	- 200	- 850		- 200	- 850		- 200	- 850		
	BPAR	- 200	- 850		- 200	- 850		- 200	- 850		
	В	- 300	-1100		- 300	-1100		- 300	-1100		
^t JITTER	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps
t _r	Rise/Fall Times										ps
t _f	(20 - 80%)	300	700	1100	300	700	1100	300	700	1100	

6. 100 Series: VEE can vary +0.46 V / –0.8 V.



Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 – Termination of ECL Logic Devices.)

Resource Reference of Application Notes

- AN1404 _ ECLinPS Circuit Performance at Non–Standard VIH Levels
- AN1405 ECL Clock Distribution Techniques
- AN1406 Designing with PECL (ECL at +5.0 V)
- AN1503 ECLinPS I/O SPICE Modeling Kit
- AN1504 Metastability and the ECLinPS Family
- AN1568 Interfacing Between LVDS and ECL
- AN1596 ECLinPS Lite Translator ELT Family SPICE I/O Model Kit
- AN1650 Using Wire–OR Ties in ECLinPS Designs
- AN1672 The ECL Translator Guide
- AND8001 _ Odd Number Counters Design
- AND8002 Marking and Date Codes
- AND8020 Termination of ECL Logic Devices

PACKAGE DIMENSIONS

NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

<u>Notes</u>

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone:** 303–675–2175 or 800–344–3860 Toll Free USA/Canada

Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.